Tensor product weight modules over the Virasoro algebra

نویسندگان

  • Hongjia Chen
  • Xiangqian Guo
  • Kaiming Zhao
چکیده

The tensor product of highest weight modules with intermediate series modules over the Virasoro algebra was discussed by Zhang [Z] in 1997. Since then the irreducibility problem for the tensor products has been open. In this paper, we determine the necessary and sufficient conditions for these tensor products to be simple. From non-simple tensor products, we can get other interesting simple Virasoro modules. We also obtain that any two such tensor products are isomorphic if and only if the corresponding highest weight modules and intermediate series modules are isomorphic respectively. Our method is to develop a “shifting technique” and to widely use Feigin-Fuchs’ Theorem on singular vectors of Verma modules over the Virasoro algebra.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

(nonmeromorphic) operator product expansion and the tensor product theory

In [HL1]–[HL5] and [H1], a theory of tensor products of modules for a vertex operator algebra is being developed. To use this theory, one first has to verify that the vertex operator algebra satisfies certain conditions. We show in the present paper that for any vertex operator algebra containing a vertex operator subalgebra isomorphic to a tensor product algebra of minimal Virasoro vertex oper...

متن کامل

Classification of Irreducible Weight Modules with a Finite-dimensional Weight Space over the Twisted Schrödinger-Virasoro Lie algebra

It is shown that the support of an irreducible weight module over the SchrödingerVirasoro Lie algebra with an infinite-dimensional weight space, coincides with the weight lattice and that all nontrivial weight spaces of such a module are infinite-dimensional. As a side-product, it is obtained that every simple weight module over the Schrödinger-Virasoro Lie algebra with a nontrivial finite-dime...

متن کامل

Partial classification of modules for Lie-algebra of diffeomorphisms of d-dimensional torus

We consider the Lie-algebra of the group of diffeomorphisms of a ddimensional torus which is also known to be the algebra of derivations on a Laurent polynomial ring A in d commuting variables denoted by DerA. The universal central extension of Der A for d = 1 is the so called Virasoro algebra. The connection between Virasoro algebra and physics is well known. See for example the book on Confor...

متن کامل

Classification of Harish-Chandra Modules over the Higher Rank Virasoro Algebras

We classify the Harish-Chandra modules over the higher rank Virasoro and super-Virasoro algebras: It is proved that a Harish-Chandra module, i.e., an irreducible weight module with finite weight multiplicities, over a higher rank Virasoro or super-Virasoro algebra is a module of the intermediate series. As an application, it is also proved that an indecomposable weight module with finite weight...

متن کامل

Weight Modules over Exp-polynomial Lie Algebras

In this paper, we generalize a result by Berman and Billig on weight modules over Lie algebras with polynomial multiplication. More precisely, we show that a highest weight module with an exp-polynomial “highest weight” has finite dimensional weight spaces. We also get a class of irreducible weight modules with finite dimensional weight spaces over generalized Virasoro algebras which do not occ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. London Math. Society

دوره 88  شماره 

صفحات  -

تاریخ انتشار 2013